Sigma and output type are optional arguments now. Also added an option to store calculated spectra as csv files.

This commit is contained in:
sakul-45 2022-03-03 23:32:02 +01:00
parent c5b83aa5c7
commit 16b5948a36
3 changed files with 39 additions and 13 deletions

5
.idea/AMM.iml generated
View File

@ -4,7 +4,10 @@
<content url="file://$MODULE_DIR$">
<excludeFolder url="file://$MODULE_DIR$/venv" />
</content>
<orderEntry type="jdk" jdkName="Python 3.8 (AMM)" jdkType="Python SDK" />
<orderEntry type="inheritedJdk" />
<orderEntry type="sourceFolder" forTests="false" />
</component>
<component name="PackageRequirementsSettings">
<option name="versionSpecifier" value="Greater or equal (&gt;=x.y.z)" />
</component>
</module>

View File

@ -3,16 +3,31 @@ Turbomole-Spectrum-Plotter
(c) 2022 Lukas Schank
This script will run through all subfolders of the given folder and plot excitation spectra of TDDFT calculations.
Call on command line like this:
python exspectrum_plotter.py --data_folder "C:\Path\to\Calculations" --output_folder "C:\path\to\results" --calc_sigma 0.15 --output_type "pdf" --save_csv False
calc_sigma output_type and save_csv are optional.
"""
import sys
import argparse
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from pathlib import Path
def exspectrum_plotter(data_folder: str, output_folder: str):
def exspectrum_plotter(data_folder: str, output_folder: str, calc_sigma=0.15, output_type="pdf", save_csv=False):
"""
Iterates through all subfolders of data_folder and plots data of exspectrum files.
:param data_folder: path to input folder
:param output_folder: path to output folder, gets created if necessary
:param calc_sigma: standard deviation of gauss broadening for calculated transitions
:param output_type: graphs can be saved as "pdf" or "png"
:param save_csv: write interpolated spectrum as csv
:return: files to the folder specified in output_folder
"""
# convert input to path objects
data_folder = Path(data_folder)
@ -43,7 +58,6 @@ def exspectrum_plotter(data_folder: str, output_folder: str):
return gauss_osc_strength
calc_energy_range = np.linspace(0, 6, num=500, endpoint=True) # x values for calculated spectrum
calc_sigma = 0.15 # std for gauss broadening
calc_osc_strength = gauss_spectrum(data_energy, data_osc_strength, calc_sigma, calc_energy_range)
# create plot
@ -57,7 +71,7 @@ def exspectrum_plotter(data_folder: str, output_folder: str):
ax.yaxis.set_tick_params(labelsize=14, width=1.5)
for axis in ['top', 'bottom', 'left', 'right']:
ax.spines[axis].set_linewidth(1.5)
ax.set_xlim(1.5, 5)
ax.set_xlim(0, 6)
plt.tight_layout()
# save plot
@ -65,16 +79,26 @@ def exspectrum_plotter(data_folder: str, output_folder: str):
output_name = data_name.parts[data_folder.parts.__len__()]
for name in data_name.parts[(data_folder.parts.__len__() + 1):]:
output_name += "_" + name
output_name += ".pdf" # change here for pdf or png output
output_path = output_folder / output_name
output_name_plot = output_name + "." + output_type
output_path = output_folder / output_name_plot
plt.savefig(output_path)
plt.close(fig) # close plot
# save calculated data
if save_csv:
csv_output = pd.DataFrame({'Energy': calc_energy_range.tolist(), 'Osc. Strength': calc_osc_strength})
output_name_csv = output_name + ".csv"
output_path_2 = output_folder / output_name_csv
csv_output.to_csv(output_path_2)
# getting commandline input and pass it to function
if __name__ == "__main__":
a = str(sys.argv[1])
b = str(sys.argv[2])
exspectrum_plotter(a, b)
# python exspectrum_plotter.py "C:\Path\to\Calculations" "C:\path\to\results"
parser = argparse.ArgumentParser()
parser.add_argument('--data_folder', type=str, required=True)
parser.add_argument('--output_folder', type=str, required=True)
parser.add_argument('--calc_sigma', type=float, required=False)
parser.add_argument('--output_type', type=str, required=False)
parser.add_argument('--save_csv', type=bool, required=False)
args = parser.parse_args()
exspectrum_plotter(**vars(args))

View File

@ -1,4 +1,3 @@
numpy~=1.22.1
pandas~=1.4.0
matplotlib~=3.5.1
pathlib~=1.0.1