diff --git a/EPR_script.m b/EPR_script.m deleted file mode 100644 index d207223..0000000 --- a/EPR_script.m +++ /dev/null @@ -1,217 +0,0 @@ -% high-spin S=1 simulation -% Inputs requested in command line at certain points - -clear variables -close all - - % window positions (currently optimised for dual WQHD with main on right) - % also uncomment all figure(gcf) when working with single monitor -% Give desired position of figure window as number of pixels [pos_x pos_y size_x size_y]: -position = [-1250,50,1200,800]; -% Give desired position of figure(2) window (will have two stacked subplots) -% as number of pixels [pos_x pos_y size_x size_y]: -position2 = [-2000,50,700,800]; -% Give desired position of figure(3) window (will contain EPR spectrum and -% simulation) as number of pixels [pos_x pos_y size_x size_y]: -position3 = [-1250,50,1200,600]; - -% specify dir for printing figures -figdir = './'; -% specifiy excel-file for saving parameters -table_path = 'example_results.xlsx'; - -%% loading Data -path = input('Path to dataset: ','s'); -load(path) - -whos % what variables have been loaded -params % what information is contained in the structure called 'params' - -% get name of dataset -dataname = string(extractBefore(extractAfter(path,asManyOfPattern(wildcardPattern + "/")),'.')); -% using Parallel Computing toolbox to speed up (check with "gpuDevice" if you can use this) -gpuData = gpuArray(Data); - -%% Baseline Correcting -% plot the raw data & check the number of points before the signal (pre-trigger) -plot(gpuData) -title('raw data') -set(gcf,'Position',position) - -% substract the pre-trigger -pre_trigger = input('Number of pre-trigger points: '); -signal_baseline_time = bsxfun(@minus, gpuData, mean(gpuData(1:pre_trigger,:))); -plot(signal_baseline_time) % plot the corrected data set -title('time corrected data') -set(gcf,'Position',position) -% figure(gcf) % bring figure to foreground - -ready = input('Proceed?'); - - % plot the transpose and check the number of points to the lower and higher fields of the signal -plot(signal_baseline_time.') -title('transposed time corrected data') -set(gcf,'Position',position) -% figure(gcf) % bring figure to foreground - - - % BASELINE correction -baseline_points = input('Number of baseline points (use smaller value from left and right): '); -l1 = mean(signal_baseline_time(:,1:baseline_points),2); % calculate the mean on the left along the time axis -l2 = mean(signal_baseline_time(:,end-baseline_points:end),2); %calculate the mean on the right along the time axis -baseline_time = (l1 +l2)/2; %take the average - -signal_baseline_time_field = bsxfun(@minus, signal_baseline_time, baseline_time); % subtract the background in the time-domain - - % plot the corrected data set -plot(signal_baseline_time_field.') -title('transposed fully corrected data') -set(gcf,'Position',position) -% figure(gcf) % bring figure to foreground - -clear ready -ready = input('Proceed?'); - - % plot the transpose to find the region of maximum signal. Use this below -plot(signal_baseline_time_field) -title('fully corrected data') -set(gcf,'Position',position) -% figure(gcf) % bring figure to foreground - - % contour plot: The index gives the number of contours -% contourf(signal_baseline_field_time,6) - - % NORMALISING -max_region = input('Region of the maximum signal as [x1:x2]: '); -% take the mean over the maxium region. You can decide how wide it is -signal_baseline_time_field_mean = (mean(signal_baseline_time_field(max_region,:))); -% normalise the amplitude to 1 -signal_baseline_time_field_mean_norm = signal_baseline_time_field_mean/max(signal_baseline_time_field_mean); - -%% Creating figure with two subplots -figure(2) -set(gcf,'PaperUnits','centimeters') -set(gcf,'Position',position2) -set(gcf,'InvertHardcopy','off','Color',[1 1 1]) -set(0,'DefaultAxesFontSize', 12,'DefaultAxesLineWidth',2) - -cont_or_surf = input('Should lower subplot be contour(1) or surface(2) plot? (1/2): '); -subplot(2,1,2) -if cont_or_surf == 1 - % contour plot: add the time and field axes - contourf(0.1*params.Field_Vector, TimeBase*1e6 ,signal_baseline_time_field,'LineColor','none') -elseif cont_or_surf == 2 - % surface plot: add the time and field axes - surf(0.1*params.Field_Vector, TimeBase*1e6 ,signal_baseline_time_field) - colormap default - shading interp -end - -xlabel('Magnetic Field / mT') -ylabel('Time / \mus') - -subplot(2,1,1) - % plot the spectrum -plot(0.1*params.Field_Vector,signal_baseline_time_field_mean_norm,'LineWidth',2) - -xlabel('Magnetic Field / mT') -axis('tight') -box off - -%% Simulation section - -Exp.mwFreq = params.mwFreq; % GHz -Exp.nPoints = length(params.Field_Vector); -Exp.CenterSweep = 0.1*[params.Field_Center params.Field_Sweep]; % mT (converted from Gauss) -Exp.Harmonic = 0; % zeroth harmonic - -init_proceed = 'n'; -while init_proceed == 'n' - % populations of the triplet sub-levels - % these need to be varied manually to get the right shape - Exp.Temperature = input('Input population of triplett sublevels as [T_x T_y T_z]: '); - % initial simulation settings - Sys.S = 1; % Total Spin - Sys.g = input('g value: '); % needs to be optimised - Sys.D = input('D and E value as [D E]: '); % mT, The D and E values need to be optimised - Sys.lw = input('Isotropic line broadening at FWHM as [Gaussian Lorentzian]: '); % mT, linewidth needs to be optimised - - [bfield,spec] = pepper(Sys,Exp); % perform a simulation with the parameters above - spec_norm = spec/max(spec); % normalize the simulation - - figure(3) - set (gcf,'PaperUnits','centimeters') - set (gcf,'Position',position3) % set the position, size and shape of the plot - set (gcf,'InvertHardcopy','off','Color',[1 1 1]) - set(0,'DefaultAxesFontSize', 16,'DefaultAxesLineWidth',1.5) - plot(0.1*params.Field_Vector,signal_baseline_time_field_mean_norm,'r', bfield,spec_norm,'b','LineWidth',1); - axis('tight') - legend('experimental','simulation') - legend boxoff - xlabel('Magnetic Field / mT') - ylabel('EPR signal / A. U.') - set(gca,'Box','Off', 'XMinorTick','On', 'YMinorTick','On', 'TickDir','Out', 'YColor','k') - pause(2); - init_proceed = input('Spectrum shape manually fitted? [y/n]: ','s'); -end - - % variation settings for simulation -Vary.g = 0.01; -Vary.D = [10 10]; -Vary.lw = [1 0]; - % further setup -FitOpt.Method = 'simplex fcn'; -FitOpt.Scaling = 'lsq'; - - % When you have got a good fit by eye, use esfit to optimise -simu_proceed = 'n'; -while simu_proceed == 'n' - % fitting routine - [BestSys,BestSpc] = esfit('pepper',signal_baseline_time_field_mean_norm,Sys,Vary,Exp,[],FitOpt); - % plot best fit - figure(3) - plot(0.1*params.Field_Vector,signal_baseline_time_field_mean_norm,'r',... - 0.1*params.Field_Vector,BestSpc,'b','LineWidth',1); - axis('tight') - legend('experimental','simulation') - legend boxoff - xlabel('Magnetic Field / mT') - ylabel('EPR signal / A. U.') - set(gca,'Box','Off', 'XMinorTick','On', 'YMinorTick','On', 'TickDir','Out', 'YColor','k') - - simu_proceed = input('Did the simulation converge? [y/n]: ','s'); - if simu_proceed == 'n' - simu_val = input('Do you want to repeat the simulation with new best values? [y/n]: ','s'); - if simu_val == 'y' - Sys.g = BestSys.g; - Sys.D = BestSys.D; - Sys.lw = BestSys.lw; - end - end -end - -%% printing figures -printing = input('Do you want to print figure(3)? [y/n]: ','s'); -if printing == 'y' - figure(3) - set(gcf,'Units','Inches'); - pos = get(gcf,'Position'); - set(gcf,'PaperPositionMode','Auto','PaperUnits','Inches','PaperSize',[pos(3), pos(4)]); - print(gcf,strcat(figdir,dataname),'-dpdf','-r0'); -end - -%% saving parameters - % concatenate data to existing table -table_old = readtable(table_path); -table_old.Properties.VariableNames = {'filename', 'date', 'pre-trigger', ... - 'baseline_points', 'max_area_left', 'max_area_right', 'T_x', 'T_y', 'T_z', ... - 'sim. g-value', 'sim_D', 'sim_E', 'sim_lw_gauss', 'sim_lw_lorentz'}; -% new data as table -table_new = table(dataname, string(datestr(clock)), pre_trigger, baseline_points, ... - max_region(1), max_region(end), Exp.Temperature(1), Exp.Temperature(2), Exp.Temperature(3), ... - BestSys.g, BestSys.D(1), BestSys.D(2), BestSys.lw(1), BestSys.lw(2), ... - 'VariableNames', {'filename', 'date', 'pre-trigger', 'baseline_points', ... - 'max_area_left', 'max_area_right', 'T_x', 'T_y', 'T_z', 'sim. g-value', ... - 'sim_D', 'sim_E', 'sim_lw_gauss', 'sim_lw_lorentz'}); -table_conc = [table_old;table_new]; -writetable(table_conc,table_path) diff --git a/double_2D_3D_plot.m b/double_2D_3D_plot.m deleted file mode 100644 index 2d6d8d1..0000000 --- a/double_2D_3D_plot.m +++ /dev/null @@ -1,7 +0,0 @@ -function [outputArg1,outputArg2] = double_2D_3D_plot(inputArg1,inputArg2) -%DOUBLE_2D_3D_PLOT Summary of this function goes here -% Detailed explanation goes here -outputArg1 = inputArg1; -outputArg2 = inputArg2; -end - diff --git a/example_results.xlsx b/example_results.xlsx deleted file mode 100644 index 7f6af96..0000000 Binary files a/example_results.xlsx and /dev/null differ