Update EPR_script.m

Added:
 - parallel computing to baseline correction
 - main simultation loop with decisions at its end
 - printing decision for fig(3)
 - extracting name of dataset for further use (printing figures, fir values in excel, ...)
This commit is contained in:
sakul-45 2021-04-25 00:06:09 +02:00
parent ce5262d6c5
commit 4a83b50ca0

View File

@ -5,11 +5,18 @@ clear variables
close all close all
% window positions (currently optimised for dual WQHD with main on right) % window positions (currently optimised for dual WQHD with main on right)
% also uncomment all figure(gcf) when working with single monitor
% Give desired position of figure window as number of pixels [pos_x pos_y size_x size_y]: % Give desired position of figure window as number of pixels [pos_x pos_y size_x size_y]:
position = [-1250,50,1200,800]; position = [-1250,50,1200,800];
% Give desired position of figure(2) window (will have two stacked subplots) % Give desired position of figure(2) window (will have two stacked subplots)
% as number of pixels [pos_x pos_y size_x size_y]: % as number of pixels [pos_x pos_y size_x size_y]:
position2 = [-2000,50,700,800]; position2 = [-2000,50,700,800];
% Give desired position of figure(3) window (will contain EPR spectrum and
% simulation) as number of pixels [pos_x pos_y size_x size_y]:
position3 = [-1250,50,1200,600];
% specify dir for printing figures
figdir = './';
%% loading Data %% loading Data
path = input('Path to dataset: ','s'); path = input('Path to dataset: ','s');
@ -18,15 +25,20 @@ load(path)
whos % what variables have been loaded whos % what variables have been loaded
params % what information is contained in the structure called 'params' params % what information is contained in the structure called 'params'
% get name of dataset
dataname = extractBefore(extractAfter(path,asManyOfPattern(wildcardPattern + "/")),'.');
gpuData = gpuArray(Data); % using Parallel Computing toolbox to speed up
%% Baseline Correcting %% Baseline Correcting
% plot the raw data & check the number of points before the signal (pre-trigger) % plot the raw data & check the number of points before the signal (pre-trigger)
plot(Data) plot(gpuData)
title('raw data') title('raw data')
set(gcf,'Position',position) set(gcf,'Position',position)
% substract the pre-trigger % substract the pre-trigger
pre_trigger = input('Number of pre-trigger points: '); pre_trigger = input('Number of pre-trigger points: ');
signal_baseline_time = bsxfun(@minus, Data, mean(Data(1:pre_trigger,:))); signal_baseline_time = bsxfun(@minus, gpuData, mean(gpuData(1:pre_trigger,:)));
plot(signal_baseline_time) % plot the corrected data set plot(signal_baseline_time) % plot the corrected data set
title('time corrected data') title('time corrected data')
set(gcf,'Position',position) set(gcf,'Position',position)
@ -34,9 +46,8 @@ set(gcf,'Position',position)
ready = input('Proceed?'); ready = input('Proceed?');
% plot the transpose and check the number of points to the lower and higher fields of the signal % plot the transpose and check the number of points to the lower and higher fields of the signal
plot(signal_baseline_time') plot(signal_baseline_time.')
title('transposed time corrected data') title('transposed time corrected data')
set(gcf,'Position',position) set(gcf,'Position',position)
% figure(gcf) % bring figure to foreground % figure(gcf) % bring figure to foreground
@ -51,7 +62,7 @@ baseline_time = (l1 +l2)/2; %take the average
signal_baseline_time_field = bsxfun(@minus, signal_baseline_time, baseline_time); % subtract the background in the time-domain signal_baseline_time_field = bsxfun(@minus, signal_baseline_time, baseline_time); % subtract the background in the time-domain
% plot the corrected data set % plot the corrected data set
plot(signal_baseline_time_field') plot(signal_baseline_time_field.')
title('transposed fully corrected data') title('transposed fully corrected data')
set(gcf,'Position',position) set(gcf,'Position',position)
% figure(gcf) % bring figure to foreground % figure(gcf) % bring figure to foreground
@ -128,7 +139,7 @@ while init_proceed == 'n'
figure(3) figure(3)
set (gcf,'PaperUnits','centimeters') set (gcf,'PaperUnits','centimeters')
set (gcf,'Position',position) % set the position, size and shape of the plot set (gcf,'Position',position3) % set the position, size and shape of the plot
set (gcf,'InvertHardcopy','off','Color',[1 1 1]) set (gcf,'InvertHardcopy','off','Color',[1 1 1])
set(0,'DefaultAxesFontSize', 16,'DefaultAxesLineWidth',1.5) set(0,'DefaultAxesFontSize', 16,'DefaultAxesLineWidth',1.5)
plot(0.1*params.Field_Vector,signal_baseline_time_field_mean_norm,'r', bfield,spec_norm,'b','LineWidth',1); plot(0.1*params.Field_Vector,signal_baseline_time_field_mean_norm,'r', bfield,spec_norm,'b','LineWidth',1);
@ -138,41 +149,51 @@ while init_proceed == 'n'
xlabel('Magnetic Field / mT') xlabel('Magnetic Field / mT')
ylabel('EPR signal / A. U.') ylabel('EPR signal / A. U.')
set(gca,'Box','Off', 'XMinorTick','On', 'YMinorTick','On', 'TickDir','Out', 'YColor','k') set(gca,'Box','Off', 'XMinorTick','On', 'YMinorTick','On', 'TickDir','Out', 'YColor','k')
pause(2);
init_proceed = input('Spectrum shape manually fitted? [y/n]: ','s'); init_proceed = input('Spectrum shape manually fitted? [y/n]: ','s');
end end
return
% variation settings for simulation % variation settings for simulation
Vary.g = 0.01; Vary.g = 0.01;
Vary.D = [10 10]; Vary.D = [10 10];
Vary.lw = [1 0]; Vary.lw = [1 0];
% further setup
FitOpt.Method = 'simplex fcn'; FitOpt.Method = 'simplex fcn';
FitOpt.Scaling = 'lsq'; FitOpt.Scaling = 'lsq';
% When you have got a good fit by eye, use esfit to optimise % When you have got a good fit by eye, use esfit to optimise
% esfit('pepper',signal_baseline_field_time_mean_norm,Sys,Vary,Exp,[],FitOpt);%fitting route simu_proceed = 'n';
% return while simu_proceed == 'n'
% fitting routine
[BestSys,BestSpc] = esfit('pepper',signal_baseline_time_field_mean_norm,Sys,Vary,Exp,[],FitOpt);
% plot best fit
figure(3)
plot(0.1*params.Field_Vector,signal_baseline_time_field_mean_norm,'r',...
0.1*params.Field_Vector,BestSpc,'b','LineWidth',1);
axis('tight')
legend('experimental','simulation')
legend boxoff
xlabel('Magnetic Field / mT')
ylabel('EPR signal / A. U.')
set(gca,'Box','Off', 'XMinorTick','On', 'YMinorTick','On', 'TickDir','Out', 'YColor','k')
[bfield,spec] = pepper(Sys,Exp); % perform a simulation with the parameters above simu_proceed = input('Did the simulation converge? [y/n]: ','s');
spec_norm = spec/max(spec); % normalize the simulation if simu_proceed == 'n'
simu_val = input('Do you want to repeat the simulation with new best values? [y/n]: ','s');
if simu_val == 'y'
Sys.g = BestSys.g;
Sys.D = BestSys.D;
Sys.lw = BestSys.lw;
end
end
end
figure(3) %% printing figures and saving parameters
set (gcf,'PaperUnits','centimeters') printing = input('Do you want to print figure(3)? [y/n]: ','s');
set (gcf,'Position',position) % set the position, size and shape of the plot if printing == 'y'
set (gcf,'InvertHardcopy','off','Color',[1 1 1]) figure(3)
set(0,'DefaultAxesFontSize', 16,'DefaultAxesLineWidth',1.5) set(gcf,'Units','Inches');
plot(0.1*params.Field_Vector,signal_baseline_time_field_mean_norm,'r', bfield,spec_norm,'b','LineWidth',1); pos = get(gcf,'Position');
axis('tight') set(gcf,'PaperPositionMode','Auto','PaperUnits','Inches','PaperSize',[pos(3), pos(4)]);
legend('experimental','simulation') print(gcf,strcat(figdir,dataname),'-dpdf','-r0');
legend boxoff end
xlabel('Magnetic Field / mT')
ylabel('EPR signal / A. U.')
set(gca,'Box','Off','XMinorTick','On',...
'YMinorTick','On','TickDir','Out','YColor','k')
% set(gcf,'Units','Inches');
% pos = get(gcf,'Position');
% set(gcf,'PaperPositionMode','Auto','PaperUnits','Inches','PaperSize',[pos(3), pos(4)]);
% print(gcf,'..\Abbildungen\Regression5','-dpdf','-r0');