Update EPR_script.m
Added: - parallel computing to baseline correction - main simultation loop with decisions at its end - printing decision for fig(3) - extracting name of dataset for further use (printing figures, fir values in excel, ...)
This commit is contained in:
		
							parent
							
								
									ce5262d6c5
								
							
						
					
					
						commit
						4a83b50ca0
					
				
							
								
								
									
										83
									
								
								EPR_script.m
									
									
									
									
									
								
							
							
						
						
									
										83
									
								
								EPR_script.m
									
									
									
									
									
								
							| @ -5,11 +5,18 @@ clear variables | ||||
| close all | ||||
| 
 | ||||
|  % window positions (currently optimised for dual WQHD with main on right) | ||||
|  % also uncomment all figure(gcf) when working with single monitor | ||||
| % Give desired position of figure window as number of pixels [pos_x pos_y size_x size_y]: | ||||
| position = [-1250,50,1200,800]; | ||||
| % Give desired position of figure(2) window (will have two stacked subplots) | ||||
| % as number of pixels [pos_x pos_y size_x size_y]:  | ||||
| position2 = [-2000,50,700,800]; | ||||
| % Give desired position of figure(3) window (will contain EPR spectrum and  | ||||
| % simulation) as number of pixels [pos_x pos_y size_x size_y]:  | ||||
| position3 = [-1250,50,1200,600]; | ||||
| 
 | ||||
| % specify dir for printing figures | ||||
| figdir = './'; | ||||
| 
 | ||||
| %% loading Data | ||||
| path = input('Path to dataset: ','s'); | ||||
| @ -18,15 +25,20 @@ load(path) | ||||
| whos % what variables have been loaded | ||||
| params % what information is contained in the structure called 'params' | ||||
| 
 | ||||
| % get name of dataset | ||||
| dataname = extractBefore(extractAfter(path,asManyOfPattern(wildcardPattern + "/")),'.'); | ||||
| 
 | ||||
| gpuData = gpuArray(Data); % using Parallel Computing toolbox to speed up | ||||
| 
 | ||||
| %% Baseline Correcting | ||||
| % plot the raw data & check the number of points before the signal (pre-trigger) | ||||
| plot(Data) | ||||
| plot(gpuData) | ||||
| title('raw data') | ||||
| set(gcf,'Position',position) | ||||
| 
 | ||||
| % substract the pre-trigger | ||||
| pre_trigger = input('Number of pre-trigger points: '); | ||||
| signal_baseline_time = bsxfun(@minus, Data, mean(Data(1:pre_trigger,:))); | ||||
| signal_baseline_time = bsxfun(@minus, gpuData, mean(gpuData(1:pre_trigger,:))); | ||||
| plot(signal_baseline_time) % plot the corrected data set | ||||
| title('time corrected data') | ||||
| set(gcf,'Position',position) | ||||
| @ -34,9 +46,8 @@ set(gcf,'Position',position) | ||||
| 
 | ||||
| ready = input('Proceed?'); | ||||
| 
 | ||||
| 
 | ||||
|  % plot the transpose and check the number of points to the lower and higher fields of the signal | ||||
| plot(signal_baseline_time') | ||||
| plot(signal_baseline_time.') | ||||
| title('transposed time corrected data') | ||||
| set(gcf,'Position',position) | ||||
| % figure(gcf) % bring figure to foreground | ||||
| @ -51,7 +62,7 @@ baseline_time = (l1 +l2)/2; %take the average | ||||
| signal_baseline_time_field = bsxfun(@minus, signal_baseline_time, baseline_time); % subtract the background in the time-domain  | ||||
| 
 | ||||
|  % plot the corrected data set | ||||
| plot(signal_baseline_time_field') | ||||
| plot(signal_baseline_time_field.') | ||||
| title('transposed fully corrected data') | ||||
| set(gcf,'Position',position) | ||||
| % figure(gcf) % bring figure to foreground | ||||
| @ -128,7 +139,7 @@ while init_proceed == 'n' | ||||
|      | ||||
|     figure(3) | ||||
|     set (gcf,'PaperUnits','centimeters') | ||||
|     set (gcf,'Position',position) % set the position, size and shape of the plot | ||||
|     set (gcf,'Position',position3) % set the position, size and shape of the plot | ||||
|     set (gcf,'InvertHardcopy','off','Color',[1 1 1]) | ||||
|     set(0,'DefaultAxesFontSize', 16,'DefaultAxesLineWidth',1.5) | ||||
|     plot(0.1*params.Field_Vector,signal_baseline_time_field_mean_norm,'r', bfield,spec_norm,'b','LineWidth',1); | ||||
| @ -138,41 +149,51 @@ while init_proceed == 'n' | ||||
|     xlabel('Magnetic Field / mT') | ||||
|     ylabel('EPR signal / A. U.') | ||||
|     set(gca,'Box','Off', 'XMinorTick','On', 'YMinorTick','On', 'TickDir','Out', 'YColor','k') | ||||
|      | ||||
|     pause(2); | ||||
|     init_proceed = input('Spectrum shape manually fitted? [y/n]: ','s'); | ||||
| end | ||||
| 
 | ||||
| return | ||||
|  % variation settings for simulation | ||||
| Vary.g = 0.01;  | ||||
| Vary.D = [10 10]; | ||||
| Vary.lw = [1 0]; | ||||
| 
 | ||||
|  % further setup | ||||
| FitOpt.Method = 'simplex fcn'; | ||||
| FitOpt.Scaling = 'lsq'; | ||||
| 
 | ||||
|  % When you have got a good fit by eye, use esfit to optimise | ||||
| % esfit('pepper',signal_baseline_field_time_mean_norm,Sys,Vary,Exp,[],FitOpt);%fitting route | ||||
| % return | ||||
| simu_proceed = 'n'; | ||||
| while simu_proceed == 'n' | ||||
|     % fitting routine | ||||
|     [BestSys,BestSpc] = esfit('pepper',signal_baseline_time_field_mean_norm,Sys,Vary,Exp,[],FitOpt); | ||||
|     % plot best fit | ||||
|     figure(3) | ||||
|     plot(0.1*params.Field_Vector,signal_baseline_time_field_mean_norm,'r',... | ||||
|          0.1*params.Field_Vector,BestSpc,'b','LineWidth',1); | ||||
|     axis('tight') | ||||
|     legend('experimental','simulation') | ||||
|     legend boxoff | ||||
|     xlabel('Magnetic Field / mT') | ||||
|     ylabel('EPR signal / A. U.') | ||||
|     set(gca,'Box','Off', 'XMinorTick','On', 'YMinorTick','On', 'TickDir','Out', 'YColor','k') | ||||
|      | ||||
| [bfield,spec] = pepper(Sys,Exp); % perform a simulation with the parameters above | ||||
| spec_norm = spec/max(spec); % normalize the simulation | ||||
|     simu_proceed = input('Did the simulation converge? [y/n]: ','s'); | ||||
|     if simu_proceed == 'n' | ||||
|         simu_val = input('Do you want to repeat the simulation with new best values? [y/n]: ','s'); | ||||
|         if simu_val == 'y' | ||||
|             Sys.g = BestSys.g; | ||||
|             Sys.D = BestSys.D; | ||||
|             Sys.lw = BestSys.lw; | ||||
|         end | ||||
|     end | ||||
| end | ||||
| 
 | ||||
| figure(3) | ||||
| set (gcf,'PaperUnits','centimeters') | ||||
| set (gcf,'Position',position) % set the position, size and shape of the plot | ||||
| set (gcf,'InvertHardcopy','off','Color',[1 1 1]) | ||||
| set(0,'DefaultAxesFontSize', 16,'DefaultAxesLineWidth',1.5) | ||||
| plot(0.1*params.Field_Vector,signal_baseline_time_field_mean_norm,'r', bfield,spec_norm,'b','LineWidth',1); | ||||
| axis('tight') | ||||
| legend('experimental','simulation') | ||||
| legend boxoff | ||||
| xlabel('Magnetic Field / mT') | ||||
| ylabel('EPR signal / A. U.') | ||||
| set(gca,'Box','Off','XMinorTick','On',... | ||||
|     'YMinorTick','On','TickDir','Out','YColor','k') | ||||
| 
 | ||||
| % set(gcf,'Units','Inches'); | ||||
| % pos = get(gcf,'Position'); | ||||
| % set(gcf,'PaperPositionMode','Auto','PaperUnits','Inches','PaperSize',[pos(3), pos(4)]); | ||||
| % print(gcf,'..\Abbildungen\Regression5','-dpdf','-r0'); | ||||
| %% printing figures and saving parameters | ||||
| printing = input('Do you want to print figure(3)? [y/n]: ','s'); | ||||
| if printing == 'y' | ||||
|     figure(3) | ||||
|     set(gcf,'Units','Inches'); | ||||
|     pos = get(gcf,'Position'); | ||||
|     set(gcf,'PaperPositionMode','Auto','PaperUnits','Inches','PaperSize',[pos(3), pos(4)]); | ||||
|     print(gcf,strcat(figdir,dataname),'-dpdf','-r0'); | ||||
| end | ||||
|  | ||||
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user