Update EPR_script.m

Finished requests on correcting and plotting section. Also moved normalising into "Baseline correcting" section.
This commit is contained in:
sakul-45 2021-04-24 12:48:38 +02:00
parent 16a0b198f6
commit eb4f59fe15

View File

@ -4,88 +4,107 @@
clear variables clear variables
close all close all
%% Baseline Correcting % window positions (currently optimised for dual WQHD with main on right)
% loading Data % Give desired position of figure window as number of pixels [pos_x pos_y size_x size_y]:
position = [-1250,50,1200,800];
% Give desired position of figure(2) window (will have two stacked subplots)
% as number of pixels [pos_x pos_y size_x size_y]:
position2 = [-2000,50,700,800];
%% loading Data
path = input('Path to dataset: ','s'); path = input('Path to dataset: ','s');
load(path) load(path)
whos % what variables have been loaded whos % what variables have been loaded
params % what information is contained in the structure called 'params' params % what information is contained in the structure called 'params'
%% Baseline Correcting
% plot the raw data & check the number of points before the signal (pre-trigger) % plot the raw data & check the number of points before the signal (pre-trigger)
plot(Data) plot(Data)
title('raw data') title('raw data')
set(gcf,'Position',position)
% substract the pre-trigger % substract the pre-trigger
pre_trigger = input('Number of pre-trigger points: '); pre_trigger = input('Number of pre-trigger points: ');
signal_baseline_field = bsxfun(@minus, Data, mean(Data(1:pre_trigger,:))); signal_baseline_time = bsxfun(@minus, Data, mean(Data(1:pre_trigger,:)));
plot(signal_baseline_field) % plot the corrected data set plot(signal_baseline_time) % plot the corrected data set
title('corrected data') title('time corrected data')
return set(gcf,'Position',position)
% figure(gcf) % bring figure to foreground
ready = input('Proceed?');
% plot the transpose and check the number of points to the lower and higher fields of the signal % plot the transpose and check the number of points to the lower and higher fields of the signal
% plot(signal_baseline_field') plot(signal_baseline_time')
% use the smaller value below title('transposed time corrected data')
% return set(gcf,'Position',position)
% figure(gcf) % bring figure to foreground
% BASLINE correction
time_points = 140; % number of points from the plot above % BASELINE correction
l1 = mean(signal_baseline_field(:,1:time_points),2); % calculate the mean on the left along the time axis baseline_points = input('Number of baseline points (use smaller value from left and right): ');
l2 = mean(signal_baseline_field(:,end-time_points:end),2); %calculate the mean on the right along the time axis l1 = mean(signal_baseline_time(:,1:baseline_points),2); % calculate the mean on the left along the time axis
l2 = mean(signal_baseline_time(:,end-baseline_points:end),2); %calculate the mean on the right along the time axis
baseline_time = (l1 +l2)/2; %take the average baseline_time = (l1 +l2)/2; %take the average
signal_baseline_field_time = bsxfun(@minus, signal_baseline_field, baseline_time); % subtract the background in the time-domain signal_baseline_time_field = bsxfun(@minus, signal_baseline_time, baseline_time); % subtract the background in the time-domain
% plot the corrected data set % plot the corrected data set
% plot(signal_baseline_field_time') plot(signal_baseline_time_field')
% return title('transposed fully corrected data')
set(gcf,'Position',position)
% figure(gcf) % bring figure to foreground
clear ready
ready = input('Proceed?');
% plot the transpose to find the region of maximum signal. Use this below % plot the transpose to find the region of maximum signal. Use this below
% plot(signal_baseline_field_time) plot(signal_baseline_time_field)
% return title('fully corrected data')
set(gcf,'Position',position)
% figure(gcf) % bring figure to foreground
% contour plot: The index gives the number of contours % contour plot: The index gives the number of contours
% contourf(signal_baseline_field_time,6) % contourf(signal_baseline_field_time,6)
% return
%% % NORMALISING
figure(1) max_region = input('Region of the maximum signal as [x1:x2]: ');
% take the mean over the maxium region. You can decide how wide it is
signal_baseline_time_field_mean = (mean(signal_baseline_time_field(max_region,:)));
% normalise the amplitude to 1
signal_baseline_time_field_mean_norm = signal_baseline_time_field_mean/max(signal_baseline_time_field_mean);
%% Creating figure with two subplots
figure(2)
set(gcf,'PaperUnits','centimeters') set(gcf,'PaperUnits','centimeters')
set(gcf,'Position',[0,0,750, 750]) set(gcf,'Position',position2)
set(gcf,'InvertHardcopy','off','Color',[1 1 1]) set(gcf,'InvertHardcopy','off','Color',[1 1 1])
set(0,'DefaultAxesFontSize', 14,'DefaultAxesLineWidth',2) set(0,'DefaultAxesFontSize', 12,'DefaultAxesLineWidth',2)
% contour plot: add the time and field axes cont_or_surf = input('Should lower subplot be contour(1) or surface(2) plot? (1/2): ');
subplot(2,1,2) subplot(2,1,2)
contourf(0.1*params.Field_Vector, TimeBase*1e6 ,signal_baseline_field_time,'LineColor','none') if cont_or_surf == 1
% contour plot: add the time and field axes % contour plot: add the time and field axes
% surf(0.1*params.Field_Vector, TimeBase*1e6 ,signal_baseline_field_time) contourf(0.1*params.Field_Vector, TimeBase*1e6 ,signal_baseline_time_field,'LineColor','none')
% colormap default elseif cont_or_surf == 2
% shading interp % surface plot: add the time and field axes
surf(0.1*params.Field_Vector, TimeBase*1e6 ,signal_baseline_time_field)
colormap default
shading interp
end
xlabel('Magnetic Field / mT') xlabel('Magnetic Field / mT')
ylabel('Time / \mus') ylabel('Time / \mus')
% colorbar
% print('TR_EPR_Chichibabin_80K_frozen_solution_532_01_3D' , '-dpng', '-r300')
% return
subplot(2,1,1) subplot(2,1,1)
% take the mean over the maxium region. You can decide how wide it is
signal_baseline_field_time_mean = (mean(signal_baseline_field_time(1300:1390,:)));
% normalise the amplitude to 1
signal_baseline_field_time_mean_norm = signal_baseline_field_time_mean/max(signal_baseline_field_time_mean);
% plot the spectrum % plot the spectrum
plot(0.1*params.Field_Vector,signal_baseline_field_time_mean_norm,'LineWidth',2) plot(0.1*params.Field_Vector,signal_baseline_time_field_mean_norm,'LineWidth',2)
xlabel('Magnetic Field / mT') xlabel('Magnetic Field / mT')
axis('tight') axis('tight')
box off box off
return
% print('TR_EPR_Chichibabin_80K_frozen_solution_570_01' , '-dpng', '-r300')
return return
%% Simulation section. Use the "Run Section" button to avoid running the previous section every time %% Simulation section. Use the "Run Section" button to avoid running the previous section every time
@ -115,13 +134,13 @@ FitOpt.Scaling = 'lsq';
[bfield,spec] = pepper(Sys,Exp); % perform a simulation with the parameters above [bfield,spec] = pepper(Sys,Exp); % perform a simulation with the parameters above
spec_norm = spec/max(spec); % normalize the simulation spec_norm = spec/max(spec); % normalize the simulation
figure(2) figure(3)
set (gcf,'PaperUnits','centimeters') set (gcf,'PaperUnits','centimeters')
set (gcf,'Position',[-900,100,800,400]) % set the position, size and shape of the plot set (gcf,'Position',position) % set the position, size and shape of the plot
set (gcf,'InvertHardcopy','off','Color',[1 1 1]) set (gcf,'InvertHardcopy','off','Color',[1 1 1])
set(0,'DefaultAxesFontSize', 16,'DefaultAxesLineWidth',1.5) set(0,'DefaultAxesFontSize', 16,'DefaultAxesLineWidth',1.5)
plot(0.1*params.Field_Vector,signal_baseline_field_time_mean_norm,'r', bfield,spec_norm,'b','LineWidth',1); plot(0.1*params.Field_Vector,signal_baseline_time_field_mean_norm,'r', bfield,spec_norm,'b','LineWidth',1);
axis('tight') axis('tight')
legend('experimental','simulation') legend('experimental','simulation')