% high-spin S=1 simulation % Go through the script line by line. Every "return" stops it. % When you have completed the task, comment out that "return" % so the script runs to the next "return" % An important part of your task is to understand the script. % I will be asking you about this in the exam. % This will be easier for those of you who attended the simulation session. clear all close all %% Baseline Correcting load '..\..\Messdaten\TR_EPR\EMX_Aufbau\HU_F2\HU_F2_435nm.mat' % check this matches the name of your data file whos % what variables have been loaded params % what information is contained in the structure called 'params' % plot the raw data & check the number of points before the signal (pre-trigger) % plot(Data) % return % substract the pre-trigger. Check how many points from the plot above signal_baseline_field = bsxfun(@minus, Data, mean(Data(1:1100,:))); % plot(signal_baseline_field) % plot the corrected data set % return % plot the transpose and check the number of points to the lower and higher fields of the signal % plot(signal_baseline_field') % use the smaller value below % return % BASLINE correction time_points = 140; % number of points from the plot above l1 = mean(signal_baseline_field(:,1:time_points),2); % calculate the mean on the left along the time axis l2 = mean(signal_baseline_field(:,end-time_points:end),2); %calculate the mean on the right along the time axis baseline_time = (l1 +l2)/2; %take the average signal_baseline_field_time = bsxfun(@minus, signal_baseline_field, baseline_time); % subtract the background in the time-domain % plot the corrected data set % plot(signal_baseline_field_time') % return % plot the transpose to find the region of maximum signal. Use this below % plot(signal_baseline_field_time) % return % contour plot: The index gives the number of contours % contourf(signal_baseline_field_time,6) % return %% figure(1) set(gcf,'PaperUnits','centimeters') set(gcf,'Position',[0,0,750, 750]) set(gcf,'InvertHardcopy','off','Color',[1 1 1]) set(0,'DefaultAxesFontSize', 14,'DefaultAxesLineWidth',2) % contour plot: add the time and field axes subplot(2,1,2) contourf(0.1*params.Field_Vector, TimeBase*1e6 ,signal_baseline_field_time,'LineColor','none') % contour plot: add the time and field axes % surf(0.1*params.Field_Vector, TimeBase*1e6 ,signal_baseline_field_time) % colormap default % shading interp xlabel('Magnetic Field / mT') ylabel('Time / \mus') % colorbar % print('TR_EPR_Chichibabin_80K_frozen_solution_532_01_3D' , '-dpng', '-r300') % return subplot(2,1,1) % take the mean over the maxium region. You can decide how wide it is signal_baseline_field_time_mean = (mean(signal_baseline_field_time(1300:1390,:))); % normalise the amplitude to 1 signal_baseline_field_time_mean_norm = signal_baseline_field_time_mean/max(signal_baseline_field_time_mean); % plot the spectrum plot(0.1*params.Field_Vector,signal_baseline_field_time_mean_norm,'LineWidth',2) xlabel('Magnetic Field / mT') axis('tight') box off return % print('TR_EPR_Chichibabin_80K_frozen_solution_570_01' , '-dpng', '-r300') return %% Simulation section. Use the "Run Section" button to avoid running the previous section every time Exp.mwFreq = params.mwFreq; % GHz Exp.nPoints = length(params.Field_Vector); Exp.CenterSweep = 0.1*[params.Field_Center params.Field_Sweep]; % mT (converted from Gauss) Exp.Harmonic = 0; % zeroth harmonic Exp.Temperature = [0 0.67 0.33]; % populations of the triplet sub-levels. These need to be varied manually to get the right shape Sys.S = 1; % Total Spin Sys.g = 1.9951; % needs to be optimised Sys.D = [2148.02 75.35]; % mT; The D and E values need to be optimised Sys.lw = [8.1034 0]; % mT; linewidth needs to be optimised Vary.g = 0.01; Vary.D = [10 10]; Vary.lw = [1 0]; FitOpt.Method = 'simplex fcn'; FitOpt.Scaling = 'lsq'; % When you have got a good fit by eye, use esfit to optimise % esfit('pepper',signal_baseline_field_time_mean_norm,Sys,Vary,Exp,[],FitOpt);%fitting route % return [bfield,spec] = pepper(Sys,Exp); % perform a simulation with the parameters above spec_norm = spec/max(spec); % normalize the simulation figure(2) set (gcf,'PaperUnits','centimeters') set (gcf,'Position',[-900,100,800,400]) % set the position, size and shape of the plot set (gcf,'InvertHardcopy','off','Color',[1 1 1]) set(0,'DefaultAxesFontSize', 16,'DefaultAxesLineWidth',1.5) plot(0.1*params.Field_Vector,signal_baseline_field_time_mean_norm,'r', bfield,spec_norm,'b','LineWidth',1); axis('tight') legend('experimental','simulation') legend boxoff xlabel('Magnetic Field / mT') ylabel('EPR signal / A. U.') set(gca,'Box','Off','XMinorTick','On',... 'YMinorTick','On','TickDir','Out','YColor','k') return set(gcf,'Units','Inches'); pos = get(gcf,'Position'); set(gcf,'PaperPositionMode','Auto','PaperUnits','Inches','PaperSize',[pos(3), pos(4)]); print(gcf,'..\Abbildungen\Regression5','-dpdf','-r0');