tr-epr-simulation/EPR_script.m
sakul-45 ce5262d6c5 Update EPR_script.m
Added inputs for manual fitting.
2021-04-24 20:25:51 +02:00

178 lines
6.4 KiB
Matlab

% high-spin S=1 simulation
% Inputs requested in command line at certain points
clear variables
close all
% window positions (currently optimised for dual WQHD with main on right)
% Give desired position of figure window as number of pixels [pos_x pos_y size_x size_y]:
position = [-1250,50,1200,800];
% Give desired position of figure(2) window (will have two stacked subplots)
% as number of pixels [pos_x pos_y size_x size_y]:
position2 = [-2000,50,700,800];
%% loading Data
path = input('Path to dataset: ','s');
load(path)
whos % what variables have been loaded
params % what information is contained in the structure called 'params'
%% Baseline Correcting
% plot the raw data & check the number of points before the signal (pre-trigger)
plot(Data)
title('raw data')
set(gcf,'Position',position)
% substract the pre-trigger
pre_trigger = input('Number of pre-trigger points: ');
signal_baseline_time = bsxfun(@minus, Data, mean(Data(1:pre_trigger,:)));
plot(signal_baseline_time) % plot the corrected data set
title('time corrected data')
set(gcf,'Position',position)
% figure(gcf) % bring figure to foreground
ready = input('Proceed?');
% plot the transpose and check the number of points to the lower and higher fields of the signal
plot(signal_baseline_time')
title('transposed time corrected data')
set(gcf,'Position',position)
% figure(gcf) % bring figure to foreground
% BASELINE correction
baseline_points = input('Number of baseline points (use smaller value from left and right): ');
l1 = mean(signal_baseline_time(:,1:baseline_points),2); % calculate the mean on the left along the time axis
l2 = mean(signal_baseline_time(:,end-baseline_points:end),2); %calculate the mean on the right along the time axis
baseline_time = (l1 +l2)/2; %take the average
signal_baseline_time_field = bsxfun(@minus, signal_baseline_time, baseline_time); % subtract the background in the time-domain
% plot the corrected data set
plot(signal_baseline_time_field')
title('transposed fully corrected data')
set(gcf,'Position',position)
% figure(gcf) % bring figure to foreground
clear ready
ready = input('Proceed?');
% plot the transpose to find the region of maximum signal. Use this below
plot(signal_baseline_time_field)
title('fully corrected data')
set(gcf,'Position',position)
% figure(gcf) % bring figure to foreground
% contour plot: The index gives the number of contours
% contourf(signal_baseline_field_time,6)
% NORMALISING
max_region = input('Region of the maximum signal as [x1:x2]: ');
% take the mean over the maxium region. You can decide how wide it is
signal_baseline_time_field_mean = (mean(signal_baseline_time_field(max_region,:)));
% normalise the amplitude to 1
signal_baseline_time_field_mean_norm = signal_baseline_time_field_mean/max(signal_baseline_time_field_mean);
%% Creating figure with two subplots
figure(2)
set(gcf,'PaperUnits','centimeters')
set(gcf,'Position',position2)
set(gcf,'InvertHardcopy','off','Color',[1 1 1])
set(0,'DefaultAxesFontSize', 12,'DefaultAxesLineWidth',2)
cont_or_surf = input('Should lower subplot be contour(1) or surface(2) plot? (1/2): ');
subplot(2,1,2)
if cont_or_surf == 1
% contour plot: add the time and field axes
contourf(0.1*params.Field_Vector, TimeBase*1e6 ,signal_baseline_time_field,'LineColor','none')
elseif cont_or_surf == 2
% surface plot: add the time and field axes
surf(0.1*params.Field_Vector, TimeBase*1e6 ,signal_baseline_time_field)
colormap default
shading interp
end
xlabel('Magnetic Field / mT')
ylabel('Time / \mus')
subplot(2,1,1)
% plot the spectrum
plot(0.1*params.Field_Vector,signal_baseline_time_field_mean_norm,'LineWidth',2)
xlabel('Magnetic Field / mT')
axis('tight')
box off
%% Simulation section
Exp.mwFreq = params.mwFreq; % GHz
Exp.nPoints = length(params.Field_Vector);
Exp.CenterSweep = 0.1*[params.Field_Center params.Field_Sweep]; % mT (converted from Gauss)
Exp.Harmonic = 0; % zeroth harmonic
init_proceed = 'n';
while init_proceed == 'n'
% populations of the triplet sub-levels
% these need to be varied manually to get the right shape
Exp.Temperature = input('Input population of triplett sublevels as [T_x T_y T_z]: ');
% initial simulation settings
Sys.S = 1; % Total Spin
Sys.g = input('g value: '); % needs to be optimised
Sys.D = input('D and E value as [D E]: '); % mT, The D and E values need to be optimised
Sys.lw = input('Isotropic line broadening at FWHM as [Gaussian Lorentzian]: '); % mT, linewidth needs to be optimised
[bfield,spec] = pepper(Sys,Exp); % perform a simulation with the parameters above
spec_norm = spec/max(spec); % normalize the simulation
figure(3)
set (gcf,'PaperUnits','centimeters')
set (gcf,'Position',position) % set the position, size and shape of the plot
set (gcf,'InvertHardcopy','off','Color',[1 1 1])
set(0,'DefaultAxesFontSize', 16,'DefaultAxesLineWidth',1.5)
plot(0.1*params.Field_Vector,signal_baseline_time_field_mean_norm,'r', bfield,spec_norm,'b','LineWidth',1);
axis('tight')
legend('experimental','simulation')
legend boxoff
xlabel('Magnetic Field / mT')
ylabel('EPR signal / A. U.')
set(gca,'Box','Off', 'XMinorTick','On', 'YMinorTick','On', 'TickDir','Out', 'YColor','k')
init_proceed = input('Spectrum shape manually fitted? [y/n]: ','s');
end
return
% variation settings for simulation
Vary.g = 0.01;
Vary.D = [10 10];
Vary.lw = [1 0];
FitOpt.Method = 'simplex fcn';
FitOpt.Scaling = 'lsq';
% When you have got a good fit by eye, use esfit to optimise
% esfit('pepper',signal_baseline_field_time_mean_norm,Sys,Vary,Exp,[],FitOpt);%fitting route
% return
[bfield,spec] = pepper(Sys,Exp); % perform a simulation with the parameters above
spec_norm = spec/max(spec); % normalize the simulation
figure(3)
set (gcf,'PaperUnits','centimeters')
set (gcf,'Position',position) % set the position, size and shape of the plot
set (gcf,'InvertHardcopy','off','Color',[1 1 1])
set(0,'DefaultAxesFontSize', 16,'DefaultAxesLineWidth',1.5)
plot(0.1*params.Field_Vector,signal_baseline_time_field_mean_norm,'r', bfield,spec_norm,'b','LineWidth',1);
axis('tight')
legend('experimental','simulation')
legend boxoff
xlabel('Magnetic Field / mT')
ylabel('EPR signal / A. U.')
set(gca,'Box','Off','XMinorTick','On',...
'YMinorTick','On','TickDir','Out','YColor','k')
% set(gcf,'Units','Inches');
% pos = get(gcf,'Position');
% set(gcf,'PaperPositionMode','Auto','PaperUnits','Inches','PaperSize',[pos(3), pos(4)]);
% print(gcf,'..\Abbildungen\Regression5','-dpdf','-r0');