import * as Blockly from "blockly/core"; Blockly.Arduino.sensebox_lora_initialize_otaa = function (block) { var deivceID = this.getFieldValue("DEVICEID"); var appID = this.getFieldValue("APPID"); var appKey = this.getFieldValue("APPKEY"); var interval = this.getFieldValue("INTERVAL"); Blockly.Arduino.libraries_["library_senseBoxIO"] = "#include "; Blockly.Arduino.libraries_["library_spi"] = "#include "; Blockly.Arduino.libraries_["library_lmic"] = "#include "; Blockly.Arduino.libraries_["library_hal"] = "#include "; Blockly.Arduino.definitions_["define_LoRaVariablesOTAA"] = ` static const u1_t PROGMEM APPEUI[8]= {${appID}}; void os_getArtEui (u1_t* buf) { memcpy_P(buf, APPEUI , 8);} static const u1_t PROGMEM DEVEUI[8]= {${deivceID}}; void os_getDevEui (u1_t* buf) { memcpy_P(buf, DEVEUI , 8);} // This key should be in big endian format (or, since it is not really a // number but a block of memory, endianness does not really apply). In // practice, a key taken from ttnctl can be copied as-is. // The key shown here is the semtech default key. static const u1_t PROGMEM APPKEY[16] = {${appKey}}; void os_getDevKey (u1_t* buf) { memcpy_P(buf, APPKEY , 16);} static osjob_t sendjob; // Schedule TX every this many seconds (might become longer due to duty // cycle limitations). const unsigned TX_INTERVAL = ${interval * 60}; // Pin mapping const lmic_pinmap lmic_pins = { .nss = PIN_XB1_CS, .rxtx = LMIC_UNUSED_PIN, .rst = LMIC_UNUSED_PIN, .dio = {PIN_XB1_INT, PIN_XB1_INT, LMIC_UNUSED_PIN}, };`; Blockly.Arduino.codeFunctions_["functions_initLora"] = ` void initLora() { delay(2000); // LMIC init os_init(); // Reset the MAC state. Session and pending data transfers will be discarded. LMIC_reset(); // Start job (sending automatically starts OTAA too) do_send(&sendjob); }`; Blockly.Arduino.codeFunctions_["functions_onEvent"] = ` void onEvent (ev_t ev) { Serial.print(os_getTime()); Serial.print(": "); switch(ev) { case EV_SCAN_TIMEOUT: Serial.println(F("EV_SCAN_TIMEOUT")); break; case EV_BEACON_FOUND: Serial.println(F("EV_BEACON_FOUND")); break; case EV_BEACON_MISSED: Serial.println(F("EV_BEACON_MISSED")); break; case EV_BEACON_TRACKED: Serial.println(F("EV_BEACON_TRACKED")); break; case EV_JOINING: Serial.println(F("EV_JOINING")); break; case EV_JOINED: Serial.println(F("EV_JOINED")); // Disable link check validation (automatically enabled // during join, but not supported by TTN at this time). LMIC_setLinkCheckMode(0); break; case EV_RFU1: Serial.println(F("EV_RFU1")); break; case EV_JOIN_FAILED: Serial.println(F("EV_JOIN_FAILED")); break; case EV_REJOIN_FAILED: Serial.println(F("EV_REJOIN_FAILED")); break; break; case EV_TXCOMPLETE: Serial.println(F("EV_TXCOMPLETE (includes waiting for RX windows)")); if (LMIC.txrxFlags & TXRX_ACK) Serial.println(F("Received ack")); if (LMIC.dataLen) { Serial.println(F("Received ")); Serial.println(LMIC.dataLen); Serial.println(F(" bytes of payload")); } // Schedule next transmission os_setTimedCallback(&sendjob, os_getTime()+sec2osticks(TX_INTERVAL), do_send); break; case EV_LOST_TSYNC: Serial.println(F("EV_LOST_TSYNC")); break; case EV_RESET: Serial.println(F("EV_RESET")); break; case EV_RXCOMPLETE: // data received in ping slot Serial.println(F("EV_RXCOMPLETE")); break; case EV_LINK_DEAD: Serial.println(F("EV_LINK_DEAD")); break; case EV_LINK_ALIVE: Serial.println(F("EV_LINK_ALIVE")); break; default: Serial.println(F("Unknown event")); break; } }`; Blockly.Arduino.loraSetupCode_["initLora"] = "initLora();\n"; Blockly.Arduino.setupCode_["serial.begin"] = "Serial.begin(9600);\ndelay(1000);\n"; var code = ""; return code; }; Blockly.Arduino.sensebox_lora_message_send = function (block) { Blockly.Arduino.libraries_["library_lora_message"] = "#include "; var lora_sensor_values = Blockly.Arduino.statementToCode(block, "DO"); Blockly.Arduino.functionNames_["functions_do_send"] = ` void do_send(osjob_t* j){ // Check if there is not a current TX/RX job running if (LMIC.opmode & OP_TXRXPEND) { Serial.println(F("OP_TXRXPEND, not sending")); } else { LoraMessage message; ${lora_sensor_values} // Prepare upstream data transmission at the next possible time. LMIC_setTxData2(1, message.getBytes(), message.getLength(), 0); Serial.println(F("Packet queued")); } // Next TX is scheduled after TX_COMPLETE event. }`; Blockly.Arduino.loopCodeOnce_["os_runloop"] = "os_runloop_once();"; return ""; }; /** * Block send Data to TTN */ Blockly.Arduino.sensebox_send_lora_sensor_value = function (block) { const reading = Blockly.Arduino.valueToCode(this, "Value", Blockly.Arduino.ORDER_ATOMIC) || '"Keine Eingabe"'; var messageBytes = this.getFieldValue("MESSAGE_BYTES"); var code = ""; switch (Number(messageBytes)) { case 1: code = `message.addUint8(${reading});\n`; break; case 2: code = `message.addUint16(${reading});\n`; break; case 3: code = `message.addUint8(${reading}); message.addUint16(${reading} >> 8);\n`; break; default: code = `message.addUint16(${reading});\n`; } return code; }; Blockly.Arduino.sensebox_lora_cayenne_send = function (block) { Blockly.Arduino.libraries_["library_cayene"] = "#include "; Blockly.Arduino.variables_["variable_cayenne"] = "CayenneLPP lpp(51);"; var lora_sensor_values = Blockly.Arduino.statementToCode(block, "DO"); Blockly.Arduino.functionNames_["functions_do_send"] = ` void do_send(osjob_t* j){ // Check if there is not a current TX/RX job running if (LMIC.opmode & OP_TXRXPEND) { Serial.println(F("OP_TXRXPEND, not sending")); } else { lpp.reset(); ${lora_sensor_values} // Prepare upstream data transmission at the next possible time. LMIC_setTxData2(1, lpp.getBuffer(), lpp.getSize(), 0); Serial.println(F("Packet queued")); } // Next TX is scheduled after TX_COMPLETE event. }`; Blockly.Arduino.loopCodeOnce_["os_runloop"] = "os_runloop_once();"; return ""; }; Blockly.Arduino.sensebox_lora_ttn_mapper = function (block) { var latitude = Blockly.Arduino.valueToCode( this, "Latitude", Blockly.Arduino.ORDER_ATOMIC ); var longitude = Blockly.Arduino.valueToCode( this, "Longitude", Blockly.Arduino.ORDER_ATOMIC ); var altitude = Blockly.Arduino.valueToCode( this, "Altitude", Blockly.Arduino.ORDER_ATOMIC ); var pDOP = Blockly.Arduino.valueToCode( this, "pDOP", Blockly.Arduino.ORDER_ATOMIC ); var fixType = Blockly.Arduino.valueToCode( this, "Fix Type", Blockly.Arduino.ORDER_ATOMIC ); var fixTypeLimit = this.getFieldValue("dropdown"); Blockly.Arduino.functionNames_["functions_do_send"] = ` void do_send(osjob_t* j){ // Check if there is not a current TX/RX job running if (LMIC.opmode & OP_TXRXPEND) { Serial.println(F("OP_TXRXPEND, not sending")); } else { int fixType = ${fixType}; if (fixType >= ${fixTypeLimit}) { // we have a 3D fix int32_t latitude = ${latitude}; // in degrees * 10^-7 int32_t longitude = ${longitude}; // in degrees * 10^-7 int32_t altitude = ${altitude} / 100; // in dm above mean sea level uint16_t pDOP = ${pDOP}; // positional dillution of precision uint8_t data[12]; data[0] = latitude; data[1] = latitude >> 8; data[2] = latitude >> 16; data[3] = latitude >> 24; data[4] = longitude; data[5] = longitude >> 8; data[6] = longitude >> 16; data[7] = longitude >> 24; data[8] = altitude; data[9] = altitude >> 8; data[10] = pDOP; data[11] = pDOP >> 8; // Prepare upstream data transmission at the next possible time. LMIC_setTxData2(1, data, sizeof(data), 0); Serial.println(F("Packet queued")); } else { // wait for better fix type os_setTimedCallback(&sendjob, os_getTime() + sec2osticks(TX_INTERVAL), do_send); } } // Next TX is scheduled after TX_COMPLETE event. }`; Blockly.Arduino.loopCodeOnce_["os_runloop"] = "os_runloop_once();"; return ""; }; Blockly.Arduino.sensebox_lora_initialize_abp = function (block) { var nwskey = this.getFieldValue("NWSKEY"); var appskey = this.getFieldValue("APPSKEY"); var devaddr = this.getFieldValue("DEVADDR"); var interval = this.getFieldValue("INTERVAL"); Blockly.Arduino.libraries_["library_senseBoxIO"] = "#include "; Blockly.Arduino.libraries_["library_spi"] = "#include "; Blockly.Arduino.libraries_["library_lmic"] = "#include "; Blockly.Arduino.libraries_["library_hal"] = "#include "; Blockly.Arduino.definitions_["define_LoRaVariablesABP"] = ` // LoRaWAN NwkSKey, network session key // This is the default Semtech key, which is used by the early prototype TTN // network. static const PROGMEM u1_t NWKSKEY[16] = { ${nwskey} }; // LoRaWAN AppSKey, application session key // This is the default Semtech key, which is used by the early prototype TTN // network. static const u1_t PROGMEM APPSKEY[16] = { ${appskey} }; // LoRaWAN end-device address (DevAddr) static const u4_t DEVADDR = 0x${devaddr}; // These callbacks are only used in over-the-air activation, so they are // left empty here (we cannot leave them out completely unless // DISABLE_JOIN is set in config.h, otherwise the linker will complain). void os_getArtEui (u1_t* buf) { } void os_getDevEui (u1_t* buf) { } void os_getDevKey (u1_t* buf) { } static osjob_t sendjob; // Schedule TX every this many seconds (might become longer due to duty // cycle limitations). const unsigned TX_INTERVAL = ${interval * 60}; // Pin mapping const lmic_pinmap lmic_pins = { .nss = PIN_XB1_CS, .rxtx = LMIC_UNUSED_PIN, .rst = LMIC_UNUSED_PIN, .dio = {PIN_XB1_INT, PIN_XB1_INT, LMIC_UNUSED_PIN}, };`; Blockly.Arduino.codeFunctions_["functions_initLora"] = ` void initLora() { delay(2000); // LMIC init os_init(); // Reset the MAC state. Session and pending data transfers will be discarded. LMIC_reset(); // Set static session parameters. Instead of dynamically establishing a session // by joining the network, precomputed session parameters are be provided. #ifdef PROGMEM // On AVR, these values are stored in flash and only copied to RAM // once. Copy them to a temporary buffer here, LMIC_setSession will // copy them into a buffer of its own again. uint8_t appskey[sizeof(APPSKEY)]; uint8_t nwkskey[sizeof(NWKSKEY)]; memcpy_P(appskey, APPSKEY, sizeof(APPSKEY)); memcpy_P(nwkskey, NWKSKEY, sizeof(NWKSKEY)); LMIC_setSession (0x1, DEVADDR, nwkskey, appskey); #else // If not running an AVR with PROGMEM, just use the arrays directly LMIC_setSession (0x1, DEVADDR, NWKSKEY, APPSKEY); #endif #if defined(CFG_eu868) // Set up the channels used by the Things Network, which corresponds // to the defaults of most gateways. Without this, only three base // channels from the LoRaWAN specification are used, which certainly // works, so it is good for debugging, but can overload those // frequencies, so be sure to configure the full frequency range of // your network here (unless your network autoconfigures them). // Setting up channels should happen after LMIC_setSession, as that // configures the minimal channel set. // NA-US channels 0-71 are configured automatically LMIC_setupChannel(0, 868100000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI); // g-band LMIC_setupChannel(1, 868300000, DR_RANGE_MAP(DR_SF12, DR_SF7B), BAND_CENTI); // g-band LMIC_setupChannel(2, 868500000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI); // g-band LMIC_setupChannel(3, 867100000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI); // g-band LMIC_setupChannel(4, 867300000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI); // g-band LMIC_setupChannel(5, 867500000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI); // g-band LMIC_setupChannel(6, 867700000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI); // g-band LMIC_setupChannel(7, 867900000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI); // g-band LMIC_setupChannel(8, 868800000, DR_RANGE_MAP(DR_FSK, DR_FSK), BAND_MILLI); // g2-band // TTN defines an additional channel at 869.525Mhz using SF9 for class B // devices' ping slots. LMIC does not have an easy way to define set this // frequency and support for class B is spotty and untested, so this // frequency is not configured here. #elif defined(CFG_us915) // NA-US channels 0-71 are configured automatically // but only one group of 8 should (a subband) should be active // TTN recommends the second sub band, 1 in a zero based count. // https://github.com/TheThingsNetwork/gateway-conf/blob/master/US-global_conf.json LMIC_selectSubBand(1); #endif // Disable link check validation LMIC_setLinkCheckMode(0); // TTN uses SF9 for its RX2 window. LMIC.dn2Dr = DR_SF9; // Set data rate and transmit power for uplink (note: txpow seems to be ignored by the library) LMIC_setDrTxpow(DR_SF7,14); // Start job do_send(&sendjob); }`; Blockly.Arduino.codeFunctions_["functions_onEvent"] = ` void onEvent (ev_t ev) { Serial.print(os_getTime()); Serial.print(": "); switch(ev) { case EV_SCAN_TIMEOUT: Serial.println(F("EV_SCAN_TIMEOUT")); break; case EV_BEACON_FOUND: Serial.println(F("EV_BEACON_FOUND")); break; case EV_BEACON_MISSED: Serial.println(F("EV_BEACON_MISSED")); break; case EV_BEACON_TRACKED: Serial.println(F("EV_BEACON_TRACKED")); break; case EV_JOINING: Serial.println(F("EV_JOINING")); break; case EV_JOINED: Serial.println(F("EV_JOINED")); break; case EV_RFU1: Serial.println(F("EV_RFU1")); break; case EV_JOIN_FAILED: Serial.println(F("EV_JOIN_FAILED")); break; case EV_REJOIN_FAILED: Serial.println(F("EV_REJOIN_FAILED")); break; case EV_TXCOMPLETE: Serial.println(F("EV_TXCOMPLETE (includes waiting for RX windows)")); if (LMIC.txrxFlags & TXRX_ACK) Serial.println(F("Received ack")); if (LMIC.dataLen) { Serial.println(F("Received ")); Serial.println(LMIC.dataLen); Serial.println(F(" bytes of payload")); } // Schedule next transmission os_setTimedCallback(&sendjob, os_getTime()+sec2osticks(TX_INTERVAL), do_send); break; case EV_LOST_TSYNC: Serial.println(F("EV_LOST_TSYNC")); break; case EV_RESET: Serial.println(F("EV_RESET")); break; case EV_RXCOMPLETE: // data received in ping slot Serial.println(F("EV_RXCOMPLETE")); break; case EV_LINK_DEAD: Serial.println(F("EV_LINK_DEAD")); break; case EV_LINK_ALIVE: Serial.println(F("EV_LINK_ALIVE")); break; default: Serial.println(F("Unknown event")); break; } }`; Blockly.Arduino.loraSetupCode_["initLora"] = "initLora();\n"; Blockly.Arduino.setupCode_["serial.begin"] = "Serial.begin(9600);\ndelay(1000);\n"; return ""; }; Blockly.Arduino.sensebox_lora_cayenne_temperature = function (block) { var temperature = Blockly.Arduino.valueToCode(this, "Value", Blockly.Arduino.ORDER_ATOMIC) || 0; var channel = this.getFieldValue("CHANNEL"); var code = `lpp.addTemperature(${channel}, ${temperature});\n`; return code; }; Blockly.Arduino.sensebox_lora_cayenne_humidity = function (block) { var humidity = Blockly.Arduino.valueToCode(this, "Value", Blockly.Arduino.ORDER_ATOMIC) || 0; var channel = this.getFieldValue("CHANNEL"); var code = `lpp.addRelativeHumidity(${channel}, ${humidity});\n`; return code; }; Blockly.Arduino.sensebox_lora_cayenne_pressure = function (block) { var pressure = Blockly.Arduino.valueToCode(this, "Value", Blockly.Arduino.ORDER_ATOMIC) || 0; var channel = this.getFieldValue("CHANNEL"); var code = `lpp.addBarometricPressure(${channel}, ${pressure});\n`; return code; }; Blockly.Arduino.sensebox_lora_cayenne_luminosity = function (block) { var luminosity = Blockly.Arduino.valueToCode(this, "Value", Blockly.Arduino.ORDER_ATOMIC) || 0; var channel = this.getFieldValue("CHANNEL"); var code = `lpp.addLuminosity(${channel}, ${luminosity});\n`; return code; }; Blockly.Arduino.sensebox_lora_cayenne_sensor = function (block) { var sensorValue = Blockly.Arduino.valueToCode(this, "Value", Blockly.Arduino.ORDER_ATOMIC) || 0; var channel = this.getFieldValue("CHANNEL"); var code = `lpp.addAnalogInput(${channel}, ${sensorValue});\n`; return code; }; Blockly.Arduino.sensebox_lora_cayenne_accelerometer = function (block) { var x = Blockly.Arduino.valueToCode(this, "X", Blockly.Arduino.ORDER_ATOMIC) || 0; var y = Blockly.Arduino.valueToCode(this, "Y", Blockly.Arduino.ORDER_ATOMIC) || 0; var z = Blockly.Arduino.valueToCode(this, "Z", Blockly.Arduino.ORDER_ATOMIC) || 0; var channel = this.getFieldValue("CHANNEL"); var code = `lpp.addAccelerometer(${channel}, ${x}, ${y}, ${z});\n`; return code; }; Blockly.Arduino.sensebox_lora_cayenne_gps = function (block) { var lat = Blockly.Arduino.valueToCode(this, "LAT", Blockly.Arduino.ORDER_ATOMIC) || 0; var lng = Blockly.Arduino.valueToCode(this, "LNG", Blockly.Arduino.ORDER_ATOMIC) || 0; var alt = Blockly.Arduino.valueToCode(this, "ALT", Blockly.Arduino.ORDER_ATOMIC) || 0; var channel = this.getFieldValue("CHANNEL"); var code = `lpp.addGPS(${channel}, ${lat}, ${lng}, ${alt});\n`; return code; };