no longer needed

This commit is contained in:
sakul-45 2021-07-27 15:06:00 +02:00
parent 65f5a71e58
commit 05e1ede24f
3 changed files with 0 additions and 224 deletions

View File

@ -1,217 +0,0 @@
% high-spin S=1 simulation
% Inputs requested in command line at certain points
clear variables
close all
% window positions (currently optimised for dual WQHD with main on right)
% also uncomment all figure(gcf) when working with single monitor
% Give desired position of figure window as number of pixels [pos_x pos_y size_x size_y]:
position = [-1250,50,1200,800];
% Give desired position of figure(2) window (will have two stacked subplots)
% as number of pixels [pos_x pos_y size_x size_y]:
position2 = [-2000,50,700,800];
% Give desired position of figure(3) window (will contain EPR spectrum and
% simulation) as number of pixels [pos_x pos_y size_x size_y]:
position3 = [-1250,50,1200,600];
% specify dir for printing figures
figdir = './';
% specifiy excel-file for saving parameters
table_path = 'example_results.xlsx';
%% loading Data
path = input('Path to dataset: ','s');
load(path)
whos % what variables have been loaded
params % what information is contained in the structure called 'params'
% get name of dataset
dataname = string(extractBefore(extractAfter(path,asManyOfPattern(wildcardPattern + "/")),'.'));
% using Parallel Computing toolbox to speed up (check with "gpuDevice" if you can use this)
gpuData = gpuArray(Data);
%% Baseline Correcting
% plot the raw data & check the number of points before the signal (pre-trigger)
plot(gpuData)
title('raw data')
set(gcf,'Position',position)
% substract the pre-trigger
pre_trigger = input('Number of pre-trigger points: ');
signal_baseline_time = bsxfun(@minus, gpuData, mean(gpuData(1:pre_trigger,:)));
plot(signal_baseline_time) % plot the corrected data set
title('time corrected data')
set(gcf,'Position',position)
% figure(gcf) % bring figure to foreground
ready = input('Proceed?');
% plot the transpose and check the number of points to the lower and higher fields of the signal
plot(signal_baseline_time.')
title('transposed time corrected data')
set(gcf,'Position',position)
% figure(gcf) % bring figure to foreground
% BASELINE correction
baseline_points = input('Number of baseline points (use smaller value from left and right): ');
l1 = mean(signal_baseline_time(:,1:baseline_points),2); % calculate the mean on the left along the time axis
l2 = mean(signal_baseline_time(:,end-baseline_points:end),2); %calculate the mean on the right along the time axis
baseline_time = (l1 +l2)/2; %take the average
signal_baseline_time_field = bsxfun(@minus, signal_baseline_time, baseline_time); % subtract the background in the time-domain
% plot the corrected data set
plot(signal_baseline_time_field.')
title('transposed fully corrected data')
set(gcf,'Position',position)
% figure(gcf) % bring figure to foreground
clear ready
ready = input('Proceed?');
% plot the transpose to find the region of maximum signal. Use this below
plot(signal_baseline_time_field)
title('fully corrected data')
set(gcf,'Position',position)
% figure(gcf) % bring figure to foreground
% contour plot: The index gives the number of contours
% contourf(signal_baseline_field_time,6)
% NORMALISING
max_region = input('Region of the maximum signal as [x1:x2]: ');
% take the mean over the maxium region. You can decide how wide it is
signal_baseline_time_field_mean = (mean(signal_baseline_time_field(max_region,:)));
% normalise the amplitude to 1
signal_baseline_time_field_mean_norm = signal_baseline_time_field_mean/max(signal_baseline_time_field_mean);
%% Creating figure with two subplots
figure(2)
set(gcf,'PaperUnits','centimeters')
set(gcf,'Position',position2)
set(gcf,'InvertHardcopy','off','Color',[1 1 1])
set(0,'DefaultAxesFontSize', 12,'DefaultAxesLineWidth',2)
cont_or_surf = input('Should lower subplot be contour(1) or surface(2) plot? (1/2): ');
subplot(2,1,2)
if cont_or_surf == 1
% contour plot: add the time and field axes
contourf(0.1*params.Field_Vector, TimeBase*1e6 ,signal_baseline_time_field,'LineColor','none')
elseif cont_or_surf == 2
% surface plot: add the time and field axes
surf(0.1*params.Field_Vector, TimeBase*1e6 ,signal_baseline_time_field)
colormap default
shading interp
end
xlabel('Magnetic Field / mT')
ylabel('Time / \mus')
subplot(2,1,1)
% plot the spectrum
plot(0.1*params.Field_Vector,signal_baseline_time_field_mean_norm,'LineWidth',2)
xlabel('Magnetic Field / mT')
axis('tight')
box off
%% Simulation section
Exp.mwFreq = params.mwFreq; % GHz
Exp.nPoints = length(params.Field_Vector);
Exp.CenterSweep = 0.1*[params.Field_Center params.Field_Sweep]; % mT (converted from Gauss)
Exp.Harmonic = 0; % zeroth harmonic
init_proceed = 'n';
while init_proceed == 'n'
% populations of the triplet sub-levels
% these need to be varied manually to get the right shape
Exp.Temperature = input('Input population of triplett sublevels as [T_x T_y T_z]: ');
% initial simulation settings
Sys.S = 1; % Total Spin
Sys.g = input('g value: '); % needs to be optimised
Sys.D = input('D and E value as [D E]: '); % mT, The D and E values need to be optimised
Sys.lw = input('Isotropic line broadening at FWHM as [Gaussian Lorentzian]: '); % mT, linewidth needs to be optimised
[bfield,spec] = pepper(Sys,Exp); % perform a simulation with the parameters above
spec_norm = spec/max(spec); % normalize the simulation
figure(3)
set (gcf,'PaperUnits','centimeters')
set (gcf,'Position',position3) % set the position, size and shape of the plot
set (gcf,'InvertHardcopy','off','Color',[1 1 1])
set(0,'DefaultAxesFontSize', 16,'DefaultAxesLineWidth',1.5)
plot(0.1*params.Field_Vector,signal_baseline_time_field_mean_norm,'r', bfield,spec_norm,'b','LineWidth',1);
axis('tight')
legend('experimental','simulation')
legend boxoff
xlabel('Magnetic Field / mT')
ylabel('EPR signal / A. U.')
set(gca,'Box','Off', 'XMinorTick','On', 'YMinorTick','On', 'TickDir','Out', 'YColor','k')
pause(2);
init_proceed = input('Spectrum shape manually fitted? [y/n]: ','s');
end
% variation settings for simulation
Vary.g = 0.01;
Vary.D = [10 10];
Vary.lw = [1 0];
% further setup
FitOpt.Method = 'simplex fcn';
FitOpt.Scaling = 'lsq';
% When you have got a good fit by eye, use esfit to optimise
simu_proceed = 'n';
while simu_proceed == 'n'
% fitting routine
[BestSys,BestSpc] = esfit('pepper',signal_baseline_time_field_mean_norm,Sys,Vary,Exp,[],FitOpt);
% plot best fit
figure(3)
plot(0.1*params.Field_Vector,signal_baseline_time_field_mean_norm,'r',...
0.1*params.Field_Vector,BestSpc,'b','LineWidth',1);
axis('tight')
legend('experimental','simulation')
legend boxoff
xlabel('Magnetic Field / mT')
ylabel('EPR signal / A. U.')
set(gca,'Box','Off', 'XMinorTick','On', 'YMinorTick','On', 'TickDir','Out', 'YColor','k')
simu_proceed = input('Did the simulation converge? [y/n]: ','s');
if simu_proceed == 'n'
simu_val = input('Do you want to repeat the simulation with new best values? [y/n]: ','s');
if simu_val == 'y'
Sys.g = BestSys.g;
Sys.D = BestSys.D;
Sys.lw = BestSys.lw;
end
end
end
%% printing figures
printing = input('Do you want to print figure(3)? [y/n]: ','s');
if printing == 'y'
figure(3)
set(gcf,'Units','Inches');
pos = get(gcf,'Position');
set(gcf,'PaperPositionMode','Auto','PaperUnits','Inches','PaperSize',[pos(3), pos(4)]);
print(gcf,strcat(figdir,dataname),'-dpdf','-r0');
end
%% saving parameters
% concatenate data to existing table
table_old = readtable(table_path);
table_old.Properties.VariableNames = {'filename', 'date', 'pre-trigger', ...
'baseline_points', 'max_area_left', 'max_area_right', 'T_x', 'T_y', 'T_z', ...
'sim. g-value', 'sim_D', 'sim_E', 'sim_lw_gauss', 'sim_lw_lorentz'};
% new data as table
table_new = table(dataname, string(datestr(clock)), pre_trigger, baseline_points, ...
max_region(1), max_region(end), Exp.Temperature(1), Exp.Temperature(2), Exp.Temperature(3), ...
BestSys.g, BestSys.D(1), BestSys.D(2), BestSys.lw(1), BestSys.lw(2), ...
'VariableNames', {'filename', 'date', 'pre-trigger', 'baseline_points', ...
'max_area_left', 'max_area_right', 'T_x', 'T_y', 'T_z', 'sim. g-value', ...
'sim_D', 'sim_E', 'sim_lw_gauss', 'sim_lw_lorentz'});
table_conc = [table_old;table_new];
writetable(table_conc,table_path)

View File

@ -1,7 +0,0 @@
function [outputArg1,outputArg2] = double_2D_3D_plot(inputArg1,inputArg2)
%DOUBLE_2D_3D_PLOT Summary of this function goes here
% Detailed explanation goes here
outputArg1 = inputArg1;
outputArg2 = inputArg2;
end

Binary file not shown.