no longer needed
This commit is contained in:
		
							parent
							
								
									65f5a71e58
								
							
						
					
					
						commit
						05e1ede24f
					
				
							
								
								
									
										217
									
								
								EPR_script.m
									
									
									
									
									
								
							
							
						
						
									
										217
									
								
								EPR_script.m
									
									
									
									
									
								
							| @ -1,217 +0,0 @@ | ||||
| % high-spin S=1 simulation | ||||
| % Inputs requested in command line at certain points | ||||
| 
 | ||||
| clear variables | ||||
| close all | ||||
| 
 | ||||
|  % window positions (currently optimised for dual WQHD with main on right) | ||||
|  % also uncomment all figure(gcf) when working with single monitor | ||||
| % Give desired position of figure window as number of pixels [pos_x pos_y size_x size_y]: | ||||
| position = [-1250,50,1200,800]; | ||||
| % Give desired position of figure(2) window (will have two stacked subplots) | ||||
| % as number of pixels [pos_x pos_y size_x size_y]:  | ||||
| position2 = [-2000,50,700,800]; | ||||
| % Give desired position of figure(3) window (will contain EPR spectrum and  | ||||
| % simulation) as number of pixels [pos_x pos_y size_x size_y]:  | ||||
| position3 = [-1250,50,1200,600]; | ||||
| 
 | ||||
| % specify dir for printing figures | ||||
| figdir = './'; | ||||
| % specifiy excel-file for saving parameters | ||||
| table_path = 'example_results.xlsx'; | ||||
| 
 | ||||
| %% loading Data | ||||
| path = input('Path to dataset: ','s'); | ||||
| load(path) | ||||
| 
 | ||||
| whos % what variables have been loaded | ||||
| params % what information is contained in the structure called 'params' | ||||
| 
 | ||||
| % get name of dataset | ||||
| dataname = string(extractBefore(extractAfter(path,asManyOfPattern(wildcardPattern + "/")),'.')); | ||||
| % using Parallel Computing toolbox to speed up (check with "gpuDevice" if you can use this) | ||||
| gpuData = gpuArray(Data); | ||||
| 
 | ||||
| %% Baseline Correcting | ||||
| % plot the raw data & check the number of points before the signal (pre-trigger) | ||||
| plot(gpuData) | ||||
| title('raw data') | ||||
| set(gcf,'Position',position) | ||||
| 
 | ||||
| % substract the pre-trigger | ||||
| pre_trigger = input('Number of pre-trigger points: '); | ||||
| signal_baseline_time = bsxfun(@minus, gpuData, mean(gpuData(1:pre_trigger,:))); | ||||
| plot(signal_baseline_time) % plot the corrected data set | ||||
| title('time corrected data') | ||||
| set(gcf,'Position',position) | ||||
| % figure(gcf) % bring figure to foreground | ||||
| 
 | ||||
| ready = input('Proceed?'); | ||||
| 
 | ||||
|  % plot the transpose and check the number of points to the lower and higher fields of the signal | ||||
| plot(signal_baseline_time.') | ||||
| title('transposed time corrected data') | ||||
| set(gcf,'Position',position) | ||||
| % figure(gcf) % bring figure to foreground | ||||
| 
 | ||||
| 
 | ||||
|  % BASELINE correction | ||||
| baseline_points = input('Number of baseline points (use smaller value from left and right): '); | ||||
| l1 = mean(signal_baseline_time(:,1:baseline_points),2); % calculate the mean on the left along the time axis | ||||
| l2 = mean(signal_baseline_time(:,end-baseline_points:end),2); %calculate the mean on the right along the time axis | ||||
| baseline_time = (l1 +l2)/2; %take the average | ||||
| 
 | ||||
| signal_baseline_time_field = bsxfun(@minus, signal_baseline_time, baseline_time); % subtract the background in the time-domain  | ||||
| 
 | ||||
|  % plot the corrected data set | ||||
| plot(signal_baseline_time_field.') | ||||
| title('transposed fully corrected data') | ||||
| set(gcf,'Position',position) | ||||
| % figure(gcf) % bring figure to foreground | ||||
| 
 | ||||
| clear ready | ||||
| ready = input('Proceed?'); | ||||
| 
 | ||||
|  % plot the transpose to find the region of maximum signal. Use this below | ||||
| plot(signal_baseline_time_field) | ||||
| title('fully corrected data') | ||||
| set(gcf,'Position',position) | ||||
| % figure(gcf) % bring figure to foreground | ||||
| 
 | ||||
|  % contour plot: The index gives the number of contours | ||||
| % contourf(signal_baseline_field_time,6) | ||||
| 
 | ||||
|  % NORMALISING | ||||
| max_region = input('Region of the maximum signal as [x1:x2]: '); | ||||
| % take the mean over the maxium region. You can decide how wide it is | ||||
| signal_baseline_time_field_mean = (mean(signal_baseline_time_field(max_region,:))); | ||||
| % normalise the amplitude to 1 | ||||
| signal_baseline_time_field_mean_norm = signal_baseline_time_field_mean/max(signal_baseline_time_field_mean); | ||||
| 
 | ||||
| %% Creating figure with two subplots | ||||
| figure(2) | ||||
| set(gcf,'PaperUnits','centimeters') | ||||
| set(gcf,'Position',position2) | ||||
| set(gcf,'InvertHardcopy','off','Color',[1 1 1]) | ||||
| set(0,'DefaultAxesFontSize', 12,'DefaultAxesLineWidth',2) | ||||
| 
 | ||||
| cont_or_surf = input('Should lower subplot be contour(1) or surface(2) plot? (1/2): '); | ||||
| subplot(2,1,2) | ||||
| if cont_or_surf == 1 | ||||
|     % contour plot: add the time and field axes | ||||
|     contourf(0.1*params.Field_Vector, TimeBase*1e6 ,signal_baseline_time_field,'LineColor','none') | ||||
| elseif cont_or_surf == 2 | ||||
|     % surface plot: add the time and field axes | ||||
|     surf(0.1*params.Field_Vector, TimeBase*1e6 ,signal_baseline_time_field) | ||||
|     colormap default | ||||
|     shading interp | ||||
| end | ||||
| 
 | ||||
| xlabel('Magnetic Field / mT') | ||||
| ylabel('Time / \mus') | ||||
| 
 | ||||
| subplot(2,1,1) | ||||
|  % plot the spectrum | ||||
| plot(0.1*params.Field_Vector,signal_baseline_time_field_mean_norm,'LineWidth',2) | ||||
| 
 | ||||
| xlabel('Magnetic Field / mT') | ||||
| axis('tight') | ||||
| box off | ||||
| 
 | ||||
| %% Simulation section | ||||
| 
 | ||||
| Exp.mwFreq = params.mwFreq; % GHz | ||||
| Exp.nPoints = length(params.Field_Vector); | ||||
| Exp.CenterSweep = 0.1*[params.Field_Center params.Field_Sweep]; % mT (converted from Gauss) | ||||
| Exp.Harmonic = 0; % zeroth harmonic | ||||
| 
 | ||||
| init_proceed = 'n'; | ||||
| while init_proceed == 'n' | ||||
|     % populations of the triplet sub-levels | ||||
|     % these need to be varied manually to get the right shape | ||||
|     Exp.Temperature = input('Input population of triplett sublevels as [T_x T_y T_z]: '); | ||||
|     % initial simulation settings | ||||
|     Sys.S = 1; % Total Spin | ||||
|     Sys.g = input('g value: '); % needs to be optimised | ||||
|     Sys.D = input('D and E value as [D E]: '); % mT, The D and E values need to be optimised | ||||
|     Sys.lw = input('Isotropic line broadening at FWHM as [Gaussian Lorentzian]: '); % mT, linewidth needs to be optimised | ||||
|      | ||||
|     [bfield,spec] = pepper(Sys,Exp); % perform a simulation with the parameters above | ||||
|     spec_norm = spec/max(spec); % normalize the simulation | ||||
|      | ||||
|     figure(3) | ||||
|     set (gcf,'PaperUnits','centimeters') | ||||
|     set (gcf,'Position',position3) % set the position, size and shape of the plot | ||||
|     set (gcf,'InvertHardcopy','off','Color',[1 1 1]) | ||||
|     set(0,'DefaultAxesFontSize', 16,'DefaultAxesLineWidth',1.5) | ||||
|     plot(0.1*params.Field_Vector,signal_baseline_time_field_mean_norm,'r', bfield,spec_norm,'b','LineWidth',1); | ||||
|     axis('tight') | ||||
|     legend('experimental','simulation') | ||||
|     legend boxoff | ||||
|     xlabel('Magnetic Field / mT') | ||||
|     ylabel('EPR signal / A. U.') | ||||
|     set(gca,'Box','Off', 'XMinorTick','On', 'YMinorTick','On', 'TickDir','Out', 'YColor','k') | ||||
|     pause(2); | ||||
|     init_proceed = input('Spectrum shape manually fitted? [y/n]: ','s'); | ||||
| end | ||||
| 
 | ||||
|  % variation settings for simulation | ||||
| Vary.g = 0.01;  | ||||
| Vary.D = [10 10]; | ||||
| Vary.lw = [1 0]; | ||||
|  % further setup | ||||
| FitOpt.Method = 'simplex fcn'; | ||||
| FitOpt.Scaling = 'lsq'; | ||||
| 
 | ||||
|  % When you have got a good fit by eye, use esfit to optimise | ||||
| simu_proceed = 'n'; | ||||
| while simu_proceed == 'n' | ||||
|     % fitting routine | ||||
|     [BestSys,BestSpc] = esfit('pepper',signal_baseline_time_field_mean_norm,Sys,Vary,Exp,[],FitOpt); | ||||
|     % plot best fit | ||||
|     figure(3) | ||||
|     plot(0.1*params.Field_Vector,signal_baseline_time_field_mean_norm,'r',... | ||||
|          0.1*params.Field_Vector,BestSpc,'b','LineWidth',1); | ||||
|     axis('tight') | ||||
|     legend('experimental','simulation') | ||||
|     legend boxoff | ||||
|     xlabel('Magnetic Field / mT') | ||||
|     ylabel('EPR signal / A. U.') | ||||
|     set(gca,'Box','Off', 'XMinorTick','On', 'YMinorTick','On', 'TickDir','Out', 'YColor','k') | ||||
|      | ||||
|     simu_proceed = input('Did the simulation converge? [y/n]: ','s'); | ||||
|     if simu_proceed == 'n' | ||||
|         simu_val = input('Do you want to repeat the simulation with new best values? [y/n]: ','s'); | ||||
|         if simu_val == 'y' | ||||
|             Sys.g = BestSys.g; | ||||
|             Sys.D = BestSys.D; | ||||
|             Sys.lw = BestSys.lw; | ||||
|         end | ||||
|     end | ||||
| end | ||||
| 
 | ||||
| %% printing figures | ||||
| printing = input('Do you want to print figure(3)? [y/n]: ','s'); | ||||
| if printing == 'y' | ||||
|     figure(3) | ||||
|     set(gcf,'Units','Inches'); | ||||
|     pos = get(gcf,'Position'); | ||||
|     set(gcf,'PaperPositionMode','Auto','PaperUnits','Inches','PaperSize',[pos(3), pos(4)]); | ||||
|     print(gcf,strcat(figdir,dataname),'-dpdf','-r0'); | ||||
| end | ||||
| 
 | ||||
| %% saving parameters | ||||
|  % concatenate data to existing table | ||||
| table_old = readtable(table_path); | ||||
| table_old.Properties.VariableNames = {'filename', 'date', 'pre-trigger', ... | ||||
|     'baseline_points', 'max_area_left', 'max_area_right', 'T_x', 'T_y', 'T_z', ... | ||||
|     'sim. g-value', 'sim_D', 'sim_E', 'sim_lw_gauss', 'sim_lw_lorentz'}; | ||||
| % new data as table | ||||
| table_new = table(dataname, string(datestr(clock)), pre_trigger, baseline_points, ... | ||||
|     max_region(1), max_region(end), Exp.Temperature(1), Exp.Temperature(2), Exp.Temperature(3), ... | ||||
|     BestSys.g, BestSys.D(1), BestSys.D(2), BestSys.lw(1), BestSys.lw(2), ... | ||||
|     'VariableNames', {'filename', 'date', 'pre-trigger', 'baseline_points', ... | ||||
|     'max_area_left', 'max_area_right', 'T_x', 'T_y', 'T_z', 'sim. g-value', ... | ||||
|     'sim_D', 'sim_E', 'sim_lw_gauss', 'sim_lw_lorentz'}); | ||||
| table_conc = [table_old;table_new]; | ||||
| writetable(table_conc,table_path) | ||||
| @ -1,7 +0,0 @@ | ||||
| function [outputArg1,outputArg2] = double_2D_3D_plot(inputArg1,inputArg2) | ||||
| %DOUBLE_2D_3D_PLOT Summary of this function goes here | ||||
| %   Detailed explanation goes here | ||||
| outputArg1 = inputArg1; | ||||
| outputArg2 = inputArg2; | ||||
| end | ||||
| 
 | ||||
										
											Binary file not shown.
										
									
								
							
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user